

Department of Biology, Chemistry, Pharmacy Institute for Pharmacy (Pharmacology and Toxicology) Königin-Luise-Str. 2+4 14195 Berlin Germany

# Standard Operating Procedure (SOP)

| Title                                     |                |               |                    |                    |             | Date                        |
|-------------------------------------------|----------------|---------------|--------------------|--------------------|-------------|-----------------------------|
| Viability as<br>plates                    | ssessment of o | cell monolay  | ers with MTT rec   | luction assay in § | 96-well     | 2017-01-05                  |
| Documen                                   | it No.         | First edition | on                 | Issued by          |             | Version 4                   |
| SOP_MTT96 2014-07-0                       |                | 2014-07-03    | 3                  | N. Zhang, V. Kr    | al          |                             |
| Version valid from Description of changes |                |               |                    |                    |             |                             |
| 1                                         | 2014-07-03     | Creation      |                    |                    |             |                             |
| 2                                         | 2014-12-01     | Adjustmen     | t of serum conce   | ntration           |             |                             |
| 3                                         | 2015-10-15     | Supplemer     | ntary characteriza | tions of nanocar   | riers; Adju | stment of positive controls |
| 4                                         | 2017-01-05     | Translation   | I                  |                    |             |                             |
|                                           |                |               |                    |                    |             |                             |
|                                           |                |               |                    |                    |             |                             |
|                                           |                |               |                    |                    |             |                             |
|                                           |                |               |                    |                    |             |                             |
|                                           |                |               |                    |                    |             |                             |
|                                           |                |               |                    |                    |             |                             |
|                                           |                |               |                    |                    |             |                             |
|                                           |                |               |                    |                    |             |                             |
| Issued by                                 |                | 1             | Reviewed by        |                    | Approve     | d by                        |
| N. Zhang, V. Kral                         |                |               | C. Zoschke, C. (   | Gerecke            | Schäfer-ł   | Korting, M.                 |
| Scope                                     |                |               |                    |                    |             |                             |
| Workgrou                                  | ps of the CRC  | 112-Z01 and   | d BB3R projects    |                    |             |                             |

# Directory

| 1 | Aims                    | 3  |
|---|-------------------------|----|
| 2 | Scope                   | 3  |
| 3 | Introduction            | 3  |
| 4 | Material                | 3  |
|   | Equipment               | 3  |
|   | Cells                   | 5  |
|   | Consumables             | 6  |
|   | Cell Culture Medium     | 7  |
|   | Solutions               | 8  |
| 5 | Step-to-step protocol   | 9  |
|   | Seeding Cells           | 9  |
|   | Nanocarrier Stimulation | 9  |
|   | MTT Evaluation          | 10 |
| 6 | Data Analysis           | 11 |
| 7 | Accepting Criteria      | 12 |
| 8 | Annex                   | 13 |

| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |

#### AIMS

Standardized viability assessment of cell monolayers with MTT (3-(4,5-dimethylthiazol-2-yl)-2,5diphenyltetrazolium bromide) reduction assay for the cytotoxic potential of test nanocarriers.

#### SCOPE

This SOP applies to the workgroups of CRC112 and BB3R projects.

#### INTRODUCTION

The MTT assay is applied to assess the viability of cell monolayers after treated with test nanocarriers. The method is based on the colorimetric change of the yellow tetrazolium dye into the purple formazan by oxidoreductase enzymes in viable cells.

For the study of nanocarriers, the MTT assay is performed on normal human keratinocytes (NHK) and normal human dermal fibroblasts (NHDF) isolated from foreskins. The primary cells are pooled after isolation (3 donors per cell type).

The physicochemical characterization of the nanocarriers is provided in data sheets, see Annex 1, by project partners, such as Prof. Bodmeier, Prof. Haag, Prof. Calderon and Prof. Lendlein, etc.

#### MATERIALS

#### Equipment

| Designation                           |                                        |                | Manufacturer                               |                           |                    |            |  |
|---------------------------------------|----------------------------------------|----------------|--------------------------------------------|---------------------------|--------------------|------------|--|
| Autoclave                             |                                        |                | Systec, Wettenberg                         |                           |                    |            |  |
| Cell counting ch                      | amber                                  |                | Zeiss, Jena                                |                           |                    |            |  |
| Centrifuge (Epp                       | endorf)                                |                | Eppendorf, H                               | lamburg                   |                    |            |  |
| Centrifuge (Meg                       | afuge <sup>®</sup> 1.0R)               |                | Thermo Fish                                | er Scientific, Wal        | ltham, MA, U       | ISA        |  |
| Fluorescence m                        | icroscope (BZ-8000K)                   |                | Keyence, Os                                | aka, JAP                  |                    |            |  |
| Fluostar Optima                       |                                        |                | BMG Labtech, Offenburg                     |                           |                    |            |  |
| Freezer (-20°C)                       |                                        |                | Siemens, München                           |                           |                    |            |  |
| Freezer (-80°C)                       |                                        |                | Thermo Fisher Scientific, Waltham, MA, USA |                           |                    |            |  |
| Incubator (BB62                       | 20)                                    |                | Thermo Fisher Scientific, Waltham, MA, USA |                           |                    |            |  |
| Magnetic stirrer                      | RCT basic                              |                | IKA-Werke, Staufen                         |                           |                    |            |  |
| Microtome (Hyra                       | ax M40)                                |                | Zeiss, Jena                                |                           |                    |            |  |
| Nitrogen tank (Arpege 70)             |                                        |                | Air Liquide, Paris, F                      |                           |                    |            |  |
| Phase contrast (<br>(Axiovert 40C)    | nverted microscope                     |                | Zeiss, Jena                                |                           |                    |            |  |
| <b>Issued by</b><br>V. Kral, N. Zhang | Reviewed by<br>C. Gerecke, C. Zoschke. | Appro<br>Schäf | oved by<br>er-Korting, M.                  | Document No.<br>SOP_MTT96 | Date<br>2017-01-05 | Vers.<br>4 |  |

| pH meter (766 Calimatic)                       | Knick, Nürnberg                                        |
|------------------------------------------------|--------------------------------------------------------|
| Pipette (Eppendorf Reference <sup>®</sup> )    | Eppendorf, Hamburg                                     |
| Pipetting aid (Easypet <sup>®</sup> )          | Eppendorf, Hamburg                                     |
| Refrigerator (4°C)                             | Siemens, München                                       |
| Shaker IKA <sup>®</sup> MTS 2                  | IKA, Staufen                                           |
| Sterile working bench (LaminAir <sup>®</sup> ) | Thermo Fisher Scientific, Waltham, MA, USA             |
| Suction pump                                   | VWR, Darmstadt                                         |
| Vortex                                         | Bender & Hobei, Zurich, CH                             |
| Water bath                                     | Gesellschaft für Labortechnik, Burgwedel               |
| Water processing unit (SG LaboStar)            | SG Wasseraufberitung und Regenerierstation, Barsbüttel |

Equivalent equipment of other suppliers can be used as well.

| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |

### Cells

| Designation                         | Source                                           |
|-------------------------------------|--------------------------------------------------|
| NHDF, passage 3, pooled of 3 donors | Isolation from juvenile preputium <sup>1</sup> ) |
| NHK, passage 3, pooled of 3 donors  | Isolation from juvenile preputium <sup>1</sup> ) |

### Abbreviations

| Designation                      | Supplier                                                       |
|----------------------------------|----------------------------------------------------------------|
| 5-FU                             | 5-fluorouracil                                                 |
| BPE                              | Bovine pituitary extract                                       |
| DMEM                             | Dulbecco's modified Eagle's medium                             |
| DMSO                             | Dimethyl sulfoxide                                             |
| EDTA                             | Ethylenediaminetetraacetic acid                                |
| FCS                              | Fetal calf serum                                               |
| KCI                              | Potassium chloride                                             |
| KH <sub>2</sub> PO <sub>4</sub>  | Potassium dihydrogenphosphate                                  |
| MTT                              | 3- (4,5-Dimethylthiazol-2-yl) -2,5-diphenyltetrazolium bromide |
| NaCl                             | Sodium chloride                                                |
| Na <sub>2</sub> HPO <sub>4</sub> | Disodium hydrogen phosphate                                    |
| OD                               | Optical density                                                |
| PBS                              | Phosphate buffered saline solution (pH 7.4)                    |
| SDS                              | Sodium dodecyl sulfate                                         |

<sup>&</sup>lt;sup>1</sup>) according to SOP "Isolation of keratinocytes and fibroblasts from human specimens"

### Consumables

| Designation                               | Supplier                      |
|-------------------------------------------|-------------------------------|
| 96-well plate (flat bottom)               | TPP, Trasadingen, Switzerland |
| Cell culture flask (75 cm <sup>2</sup> )  | TPP, Trasadingen, Switzerland |
| Cell culture flask (150 cm <sup>2</sup> ) | TPP, Trasadingen, Switzerland |
| Centrifuge tube (15 mL)                   | Sarstedt, Nümbrecht           |
| Centrifuge tube (50 mL)                   | Sarstedt, Nümbrecht           |
| DMEM                                      | Sigma-Aldrich, München        |
| DMSO                                      | Sigma-Aldrich, München        |
| EDTA                                      | Sigma-Aldrich, München        |
| FBS Superior                              | Biochrom, Berlin              |
| H <sub>2</sub> O ( pyrogen free)          | Carl Roth, Karlsruhe          |
| KCI                                       | Sigma-Aldrich, München        |
| KH <sub>2</sub> PO <sub>4</sub>           | Carl Roth, Karlsruhe          |
| KGM Bulletkit                             | Lonza, Köln                   |
| L-Glutamin                                | Biochrom, Berlin              |
| MTT                                       | Sigma-Aldrich, München        |
| Na <sub>2</sub> HPO <sub>4</sub>          | Carl Roth, Karlsruhe          |
| NaCl                                      | Carl Roth, Karlsruhe          |
| Keratinocytes Growth Medium (KGM)         | Lonza, Köln                   |
| L-Glutamine                               | Sigma-Aldrich, München        |
| Penicillin-Streptomycin-solution          | Biochrom, Berlin              |
| Pipette tips                              | Eppendorf, Hamburg            |
| Trypan blue                               | Biochrom, Berlin              |
| Trypsin dry substance                     | Biochrom, Berlin              |

Equivalent consumables of other suppliers can be used as well.

| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |

### Cell culture medium

| Description | Ingredients             |      |    | Remarks      |
|-------------|-------------------------|------|----|--------------|
| FBM         | DMEM                    | 500  | mL |              |
|             | L-Glutamine             | 5    | mL |              |
|             | Penicillin/Streptomycin | 5    | mL | 4°C, 6 weeks |
| FGM         | FBM                     | 510  | mL |              |
|             | Fetal Calf Serum        | 37.5 | mL | 4°C, 6 weeks |
| KGM         | KBM                     | 500  | mL |              |
|             | KGM supplements         |      |    | 4°C, 6 weeks |

For NHDF, FGM is applied as cell culture medium, and FBM as nanocarrier testing medium. For NHK, KGM is applied as both cell culture and nanocarrier testing medium.

#### **General information**

Unless stated otherwise, all procedures should be performed under sterile laminar flow conditions, cells are incubated in the incubator at  $37^{\circ}$ C, 5 % CO<sub>2</sub> and 95 % humidity, and all the mediums are pre warmed in water bath at  $37^{\circ}$ C for 30 min.

### **Colored nanocarriers**

For assessment of colored nanocarriers, before undergoing the procedure, first mix the testing nanocarrier at 0.05% (w/v) with freshly prepared MTT solution. If the solution turns blue or purple, the nanocarriers are supposed to reduce MTT directly.

And to further study the interference of the colorant with the MTT reading, an additional color control should be performed. When performing the standard absorbance measurement, each interfering nanocarrier is applied in triplicates per exposure time, which undergoes the same procedures but is incubated with medium instead of MTT solution during the MTT incubation step to generate a non-specific color control. The final viability of the test nanocarriers is then calculated by subtracting the value of the color control.

When the MTT reading does not meet the accepting criteria, an alternative method, e.g. Neutral Red Uptake assay (OECD Test Guideline 432), could be performed for the aim of cytotoxicity evaluation.

| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |

#### Solutions

#### **PBS and Trypsin-EDTA solutions**

PBS and Trypsin-EDTA solutions are prepared according to the SOP as on page 5, autoclaved, and stored at 4°C.

#### **Positive Control SDS solutions**

Dilute 5 mg of SDS with 10 mL of distilled  $H_2O$  into a 0.05% (w/v) stock solution, and a 1:10 dilution of the stock solution and respective testing medium is applied as positive control.

#### **Solvent Control solutions**

Dilute pyrogen free  $H_2O$  or PBS, depending on the solvent used in the nanocarrier respectively, in 1:10 with respective testing medium. The solution is applied as solvent control,.

#### **MTT** solutions

Dilute MTT powder with PBS into a 5 mg/mL solution, aliquot and store at -20°C as stock solution. Dilute MTT stock solution 1:10 with respective testing medium.

#### **Testing nanocarriers solutions**

Dilute the nanocarrier solution with pyrogen free  $H_2O$  or PBS, depending on the solvent used in the nanocarrier respectively, into 0.5% and 0.05% (w/v) solutions. Dilute these nanocarriers 1:10 with the respective testing medium to a final concentrations of 0.05% and 0.005% (w/v).

| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |

### STEP-TO-STEP PROTOCOL

#### Seeding cells | Day 0

- 1.5 mL of Trypsin-EDTA is added into the cell culture flask 75 cm<sup>2</sup> and put into the incubator for 3 min.
- 3.5 mL of KGM or FGM is added into the flask, and the cell suspension is transferred into a 50 mL centrifuge tube. The cell culture bottom is then washed twice with 5 mL PBS each, and all washed cell suspensions are transferred to the same tube
- Centrifugate at 1000 rpm for 5 min. discard the supernatant and resuspend the cells with 10 mL of PBS, then count the cells according to the SOP on page 5 and repeat the centrifugation.
- Adjust the cell suspension to  $1 \times 10^5$  cells / mL with relative cell culture medium.
- Pipet 100 µL of the cell suspension into each inner wells of the 96-well plate (see scheme day 0), which corresponds to 10,000 cells / well. And pipet 100 µL of the relative cell culture medium, see Page 7, into the outer wells. The plates are then placed into the incubator for 24 h.

|   | 1 | 2  | 3  | 4  | 5  | 6  | 7  | 8  | 9  | 10 | 11 | 12 |
|---|---|----|----|----|----|----|----|----|----|----|----|----|
| А | В | В  | В  | В  | В  | В  | В  | В  | В  | В  | В  | В  |
| В | В | CS | В  |
| С | В | CS | В  |
| D | В | CS | В  |
| Е | В | CS | В  |
| F | В | CS | В  |
| G | В | CS | В  |
| Н | В | В  | В  | В  | В  | В  | В  | В  | В  | В  | В  | В  |

#### Scheme day 0: cell seeding

B: Blank (Cell culture medium); CS: cell suspension  $(1 \times 10^5 \text{ cells / ml})$ 

#### Nanocarrier Stimulation | Day 1

- Prepare all the solutions as described in the solutions section.
- Check the cell morphology under the microscope.
- Aspirate all the medium from the plate with the suction pump and pipet tips (yellow) in a gentle manner.

| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |

100 µL of the corresponding medium or solutions are then pipetted into each well (see scheme day 1).

|   | 1 | 2  | 3  | 4  | 5   | 6   | 7   | 8   | 9   | 10  | 11 | 12 |
|---|---|----|----|----|-----|-----|-----|-----|-----|-----|----|----|
| А | В | В  | в  | В  | в   | В   | В   | В   | В   | В   | В  | В  |
| В | В | UC | SC | PC | C1a | C2a | C3a | C4a | C5a | C6a | UC | В  |
| С | В | UC | SC | PC | C1a | C2a | C3a | C4a | C5a | C6a | UC | В  |
| D | В | UC | SC | PC | C1a | C2a | C3a | C4a | C5a | C6a | UC | В  |
| Е | В | UC | SC | PC | C1b | C2b | C3b | C4b | C5b | C6b | UC | В  |
| F | В | UC | SC | PC | C1b | C2b | C3b | C4b | C5b | C6b | UC | В  |
| G | В | UC | SC | PC | C1b | C2b | C3b | C4b | C5b | C6b | UC | В  |
| Н | В | В  | В  | В  | В   | В   | В   | В   | В   | В   | В  | В  |

• The plates are then placed into the incubator for 24 h or 48 h.

Scheme day 1

B: Blank (only testing medium without cells); UC: Untreated Control (only testing medium with cells); SC: Solvent Control; PC: Positive Control; C1-6: Testing nanocarrier solutions (a: 0.05%, b: 0.005%)

### MTT Evaluation | Day 02 or 3

- Prepare the MTT solution as described in the solutions section.
- Check the cell morphology under the microscope.
- Aspirate all the medium from the plate with the suction pump and pipet tips (yellow) in a gentle manner, and wash each well once with 100 µL of PBS.
- Add 100  $\mu$ L of the MTT solution into each well, then place the plates into the incubator for 4 h.
- Remove the MTT solution by gentle suction and place the plates over a sterilized paper towel for 1 min.
- Add 50 µL of DMSO into each well, and put the plate onto the plate shaker at 500 rpm for 10 min.
- Measure the absorption at the wavelength of 540 nm, name all the relative excel and prism files with the same experiment ID, and calculate the viability.

### **Photometer – Setting**

| Device FLUOstar OPTIMA (or equivalent device) |                  |          |                       |              |            |       |  |
|-----------------------------------------------|------------------|----------|-----------------------|--------------|------------|-------|--|
| Programme                                     |                  | MTT Ab   | MTT Absorbance, TPP96 |              |            |       |  |
| Mode                                          |                  | Disk Mo  | ode                   |              |            |       |  |
| Positioning Delay                             |                  | 0.7 s    |                       |              |            |       |  |
| No. Kinetic Windows                           |                  | 1        |                       |              |            |       |  |
| Issued by                                     | Reviewed by      |          | Approved by           | Document No. | Date       | Vers. |  |
| V. Kral, N. Zhang                             | C. Gerecke, C. Z | loschke. | Schäfer-Korting, M.   | SOP_MTT96    | 2017-01-05 | 4     |  |

| Excitation Filter              | A540          |
|--------------------------------|---------------|
| Emission Filter                | Empty         |
| No. Multichromatics            | 1             |
| Shaking width                  | 1 mm; 600 rpm |
| No. Cycles                     | 1             |
| No. Flashes per well and cycle | 2             |

A comparable device with adequate adjustment can also be used.

### **Data Analysis**

- The blank value is subtracted from all measured values to gain a corrected OD value.
- From each plate, the mean corrected value for the solvent control is set equal to 100%. The viability rates of the test nanocarriers are calculated as follows:

Viability (%) =  $\frac{\text{Corrected Testing Nanocarrier Value}}{\text{Corrected Sovent Control}} \times 100\%$ 

• An Excel and GraphPad Prism 5 spreadsheet is provided which is used for the calculation of the results. For use details of the spreadsheet see Annex 2.

| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |

### **Accepting Criteria**

The results are acceptable if:

• The corrected OD values of the untreated controls are within the range:

| Cell Type | Corrected OD Value |
|-----------|--------------------|
| NHK       | 0.15–1.0           |
| NHDF      | 0.3–1.0            |

- The difference of viability among triplicates is is < 20% in the same run.
- The values of the viability from column 2 and 11 (untreated controls) show a deviation of ≤ 15%.
- The viability of positive controls is below 15 %.

| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |

 Annex 1

 Sample Data Sheet
 Working Group\_\_\_\_\_
 Project Name \_\_\_\_\_\_

Table 1 General Information

| Sample Name            | Date of Delivery |
|------------------------|------------------|
| Technician or PhD Name | Tel. No.         |
| Lab Journal No.        | Batch No.        |

#### Chemical Structure, Formulation/Solvent, Guest, Marker:

#### Table 2 Delivered Amount, Concentration and Solubility

Amount (mg or mL)

C(carrier)

**Dissolved in** 

Sterilization

**Storage Recommendation** 

**History of Sample** 

### Table 3 Characterization (optional)

| IR  | DLS |
|-----|-----|
| NMR | REM |
| UV  | ТЕМ |

| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |

### Annex 2

Table 1 (Excel) raw data OD

### **Experiment ID:**

|   | 1 | 2  | 3  | 4  | 5   | 6   | 7   | 8   | 9   | 10  | 11 | 12 |
|---|---|----|----|----|-----|-----|-----|-----|-----|-----|----|----|
| А | В | В  | в  | В  | В   | В   | В   | В   | В   | В   | в  | В  |
| В | В | UC | SC | PC | C1a | C2a | C3a | C4a | C5a | C6a | UC | В  |
| С | В | UC | SC | PC | C1a | C2a | C3a | C4a | C5a | C6a | UC | В  |
| D | В | UC | SC | PC | C1a | C2a | C3a | C4a | C5a | C6a | UC | В  |
| Е | В | UC | SC | PC | C1b | C2b | C3b | C4b | C5b | C6b | UC | В  |
| F | В | UC | SC | PC | C1b | C2b | C3b | C4b | C5b | C6b | UC | В  |
| G | В | UC | SC | PC | C1b | C2b | C3b | C4b | C5b | C6b | UC | В  |
| Н | В | В  | В  | В  | В   | В   | В   | В   | В   | В   | В  | В  |

# Table 2 (Excel) corrected OD (raw data OD – blank OD)

### **Experiment ID:**

|            | 1           | 2            | 3  | 4  | 5   | 6   | 7   | 8   | 9   | 10  | 11 | 12 |
|------------|-------------|--------------|----|----|-----|-----|-----|-----|-----|-----|----|----|
| А          | В           | В            | В  | В  | В   | В   | В   | В   | В   | В   | В  | В  |
| В          | В           | UC           | SC | PC | C1a | C2a | C3a | C4a | C5a | C6a | UC | В  |
| С          | В           | UC           | SC | PC | C1a | C2a | C3a | C4a | C5a | C6a | UC | В  |
| D          | В           | UC           | SC | PC | C1a | C2a | C3a | C4a | C5a | C6a | UC | В  |
| E          | В           | UC           | SC | PC | C1b | C2b | C3b | C4b | C5b | C6b | UC | В  |
| F          | В           | UC           | SC | PC | C1b | C2b | C3b | C4b | C5b | C6b | UC | В  |
| G          | В           | UC           | SC | PC | C1b | C2b | C3b | C4b | C5b | C6b | UC | В  |
| Н          | В           | В            | В  | В  | В   | В   | В   | В   | В   | В   | в  | В  |
| MEAN<br>OD | В           | UC           | SC | PC | C1a | C2a | C3a | C4a | C5a | C6a | UC | В  |
|            | B<br>(1+12) | UC<br>(2+11) |    |    | C1b | C2b | C3b | C4b | C5b | C6b |    | в  |

| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |

Table 3 (Excel) viability (%)

| Sample Name | Corrected OD | Viability (%) |
|-------------|--------------|---------------|
| SC          |              | 100           |
| PC          |              |               |
| C1a         |              |               |
| C1b         |              |               |
| C2a         |              |               |
| C2b         |              |               |
| C3a         |              |               |
| C3b         |              |               |
| C4a         |              |               |
| C4b         |              |               |
| C5a         |              |               |
| C5b         |              |               |
| C6a         |              |               |
| C6b         |              |               |

| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |

# Table 4 (Prism)

Graph Collum, Plot Mean ± SEM

### **Experiment ID:**

|   | C1b | C1a | C2b | C2a | C3b | C3a | C4b | C4a | C5b | C5a | C6b | C6a | PC | SC |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----|----|
|   | Y   | Y   | Y   | Y   | Y   | Y   | Y   | Y   | Y   | Y   | Y   | Y   | Y  | Y  |
| 1 |     |     |     |     |     |     |     |     |     |     |     |     |    |    |
| 2 |     |     |     |     |     |     |     |     |     |     |     |     |    |    |
| 3 |     |     |     |     |     |     |     |     |     |     |     |     |    |    |



| Issued by         | Reviewed by             | Approved by         | Document No. | Date       | Vers. |
|-------------------|-------------------------|---------------------|--------------|------------|-------|
| V. Kral, N. Zhang | C. Gerecke, C. Zoschke. | Schäfer-Korting, M. | SOP_MTT96    | 2017-01-05 | 4     |